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The interaction of ions in solution and in the adsorbed state with themselves 
and with charges induced in the solid phase varies the isotherms of ion adsorp- 
tion and the'structure of the diffusion part of a double electric layer. This 
effect is treated within the Debye-Huckel approximation for a dilute solution 
of a strong electrolyte under conditions of local thermodynamic equilibrium. 

The functioning of numerous electrochemical systems [i], the diversified electrokinetic 
effects and the processes based on them of electrofiltration, electrodialysis, direct and 
reverse electro-osmosis, electro-osmotic desalinification, the disintegration or consolida- 
tion of soils [2-4], widely used in contemporary technology - are ultimately determined by 
propulsive forces, depending on the equilibrium thermodynamic functions of components of 
electroactive fluid media in the presence of an evolving surface of contact with the solid 
phase. These functions in finely porous and colloid systems depend, in turn, substantially 
on the character of electrosurface effects, and primarily on the structure of Double Elec- 
tric Layers (DEL) formed at phase boundaries. In that case the specific and nonspecific ad- 
sorption parts of solution ions lead not only to modification of this structure and to cor- 
responding variations of the electrostatic interaction between pore walls or suspended parti- 
cles, but also assist in depleting the solution of ions by shifting the equilibrium dissoci- 
ation-recombination reactions in the solution and sorption-desorption of ions in adsorption 
layers [5]. Surface effects of nonelectric nature, considered in [6], can also have a sim- 
ilar effect on the thermodynamic properties of nondissociating solutions. 

The Coulomb interaction of ions, both in an electrolyte solution and in adsorption 
layers, causes substantial variation in the thermodynamic functions of the solution compon- 
ents, and must therefore also affect the DEL properties and the rate of all electrokinetic 
processes depending on these properties. The difference in dielectric permittivity between 
the solution and the phase boundary with it also leads to appearance of an electrostatic 
interaction of ions with this phase (generating image forces), playing an important role in 
numerous electrochemical systems [i]. The mechanism of dielectric inclusion of ions caused 
by this interaction is also quite important for a number of electrokinetic effects, includ- 
ing reverse osmosis [3]. 

Taking into account interactions of ions with themselves and with induced charges in 
constructing models of dense and diffuse DEL parts requires generalization of the Guy- 
Chapman-Stern theory (see reviews in [7-9], as well as the discussion of the state of art 
of contemporary theory of ionic adsorption in [i0]). Attempts of such generalization are 
usually based on numerical modeling or on the use of quite complicated methods of statisti- 
cal physics, using, in particular, the Ornstein-Zernike equations along with the mean- 
spherical and hyperchain approximations (characteristic examples can be found in [7], as 
well as in [11-14]). Though these attempts have led to substantial improvement in the un- 
derstanding of electric effects at interphase separation boundaries, the results are often 
difficult to review, and it is difficult to draw conclusions from them, except for most 
general ones. Therefore, in the present paper the problem is treated on the basis of con- 
sequences of the hypothesis of local thermodynamic equilibrium in the system, invoking a 
number of phenomenological considerations. 

Consider below a completely dissociated electrolyte solution, containing J types of 
ions with valences zj in concentrations nj (j = 1 ..... n), near a planar smooth molecular 
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surface of the solid or fluid phase, or a boundary separating the solution from the gas 
phase. The quantities nj depend on the normal coordinate, whose origin of reference is 
selected on this surface. The deviations of nj from the corresponding nj 0 values, reached 

upon removal far from the surface, are assumed small, i.e., one puts ]ni--njo]nilo!<<l , making 

it possible to linearize the Poisson-Boltzmann equation by means of the Debye-Huckel ap- 
proximation, and at the same time simplify the calculations substantially. The number con- 
centration n o of solvent molecules is assumed to be homogeneous. The electric neutrality 
condition leads to the requirement of vanishing density of the bulk electric charge upon 
removal from the surface of separation: 

J J 

q = e  E z ;n j - -*qo=e '~  z./n;o : O. ( 1 )  
x-->~ 

/=1 /=i 

Ions of all kinds are capable of being adsorbed on the surface, so that the charged 
ionic centers of j-th type are located in the corresponding Helmholtz plane, found at a dis- 
tance x = 6j = dj/2 from the surface. For simplicity it is assumed that the characteristic 
sizes dj ar& identical for ions of all types, i.e., the corresponding Helmholtz planes coin- 
cide. (Situations are common in which only ions of one type practically posses the capabil- 
ity of specific adsorption. These ions are easily obtained if the corresponding energy of 
specific adsorption is much lower than the similar quantities for ions of all other types.) 
The surface density of the electric charge in the Helmholtz plane, caused by adsorption of 
ions, is expressed in the form 

J J 

/~1 f=l 
(2) 

Besides, in the same plane with density o e charges can be distributed, whose occurrence is 
related to dissociation of ionogenic groups, surface complex formation, etc. At the surface 
of separation x = 0 one also admits the presence of a charge distributed with density o,. 
The quantities o e and o, are further considered to be known. The elementary electric sur- 
face charges are, in principle, capable of being displaced and forming, as a result, short- 
range order. The problem of distribution and effective interaction of ions is quite compli- 
cated, and is discussed in detail in [i0]. For simplicity it is phenomenologically assumed 
here that part of the ions is rigidly and randomly localized at certain fixed positions 
(i.e., without formation of short-range order), while the remaining part can be displaced 
completely freely, similarly to ions in the bulk of the solution. The fraction of ions of 
j-th type in the adsorption layer, capable of being displaced, is denoted below by m- 
while the fractions of free charges, forming densities o e and o,, are denoted by m e ~nd m,, 
respectively. We note that the generalization to situations when the planes of adsorbed 
ions of different types and of charge of density o e do not coincide - does not present any 
major difficulties, but it does complicate the calculations substantially. 

The dielectric constant g, of the boundary phase is assumed homogeneous (for conduc- 
tors ~, ~, and for a gas E, = I). The dielectric constant of the solution, depending 
strongly on the distance from the surface, is described phenomenologically, assuming that 

it acquires the values e and ez in the regions x > 6 and 0 < x < 6, respectively (usually 
ez is much smaller than e). 

The mean electric potential is determined within the approximations adopted by solving 
the equations: 

d2~ _ 4~e ~ J 

dx2 ~ ~ z:m (x), 6 < x < ~ ;  
(3) 

d2q%/dx 2= O, 0<x<6; qD, = const ,  --oo<x<0 

with boundary conditions: 

d~ d~1 
qo---~O, x---~-~;  q ~ = % ,  s s ~ - -  4 ~ ( ~ +  ~ ) ,  x = 6 ;  

dx dx 

d~v 1 4~ 
- -  - -  i f , ,  X = O. 
dx sl 

(4) 
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For closure of this boundary value problem it is necessary to determine the adsorbed charge 
density according to (2) and the distributions nj(x), tending to nj0 for x § = and satisfy- 
ing condition (i). 

In principle, the quantities indicated above can be found on the basis of the concept 
of local thermodynamic equilibrium of ions of all types from the homogeneity requirement of 
the corresponding total chemical (electrochemical) potentials. The basic difficulty of cal- 
culating the latter is related to estimating the contributions due to ion interactions with 
themselves and with charges induced in the phase boundary. It is first necessary to deter- 
mine the effective electric potential created by all ions and charges except one, at the 
location of whose center an ion is isolated. This can be done by means of the classical 
Debye procedure by using the mean field approximation. 

Consider the electrostatic field around an ion with charge ezj and centered at a point 
at distance h from the interphase surface. This ion forms an ionic cluster consisting of 
other ions in the solution, generates a polarization of the mobile parts of the surface 
charges, and induces charges at the phase boundary. This leads, in particular, to the ap- 
pearance of perturbed surface charge densities and electric potential in different regions. 
Using the definitions of the coefficients mj, me, and m,, the Boltzmann distribution for 
ions, and the Debye-Huckel approximation, we have: 

- - -  z}~j (x), 
kT 

~: ~ - - ~  mjz~rj 9' , 
kT x=a 

, eZj , , e Z j  I 

kt ~=~ kT ..... Ix=o" 

Taking into account these expressions in equations of type (3) for the total potentials r + 
, r + Ca and r + r and evaluating (3) from them, we obtain: 

Ag' - -  • O, • 4~e2 + -- = - -  zyni, 5 <  x < ~;  9 

( 5 )  

Ag[ = O, O < x < 5 ;  Ag,  = O, - - o o < x < O .  

Proceeding similarly with the boundary conditions (4), we have: 

9 ' -~0 ,  x - - - ~ ;  9 ' ~  ezj 
Y ~  (x - -  h)2 + r~' x -~  h, r - ~  O; 

9' = 91, O~' /Ox--  (~,/8)Og~/Ox= ~9', x = 6; 

9;  = 9:,, ( ~ , / ~ ) 0 9 ; / o x -  (~,/~) o g , / o x  = y,,~;,  x = 0; 

q0, -+ O, X - ~ - -  oo; 

4z~eZ ( +  rn,z~I',-}- rrtege I 4ae 
Y = - ~  \ ~ e / '  Y* = ekTm*%" 

Using t h e  I{ankel t r a n s f o r m ,  t h e  s o l u t i o n  o f  b o u n d a r y  v a l u e  p r o b l e m  ( 5 ) ,  
r e p r e s e n t e d  in  i n t e g r a l  fo rm:  

(6 )  can  be 

( 6 )  

9,=i{ezjexp[--lh--xlF-J+xi] . 

+ C (o)) exp (-- x V ~  + • ) x 

x Jo (~or)r 9;=i{C+(oOe~e+CT-(co)  e-~}Jo(o~r)o~do~ , (7)  

q~* = i C, (~o) eXoJ 0 ((or) ~odo), 
o 
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where the following algebraic equations follow for the unknown coefficients in the integrand 

functions of (6) and (7): 

ezj exp [ - -  (h - -  6) ]/~-5 + • 
+ C exp ( - -  6 ~ / ~  + • = 

= C~e ~ + CFe-8% (ezj/s) exp [~- (h--  8 ) l - J +  • ] - -  

_ _  r m2 + • C exp (-- 6 g ~  + • ) _ 

sl ~ (C~e6~ _ CFe_~ )__ ~ ezj exp [-- (h - -  6) V ~2 + • + 

+ vC exp (--  6 } / ~  + • ), CF + CF = C , ,  

(~1/~) (C~--  CF) = (s , /8  + ~ , / ~ )  C,. 

It hence follows, in particular, that 

C ( m ) =  ez~ e x p [ - - ( h - - 2 6 ) ] / ~ + z a  I • 

8 V~ + x~ 

( 1 - -  B) ( , /~2  + • __ ~) __ ~ (1 + B) (o ( 8 ) X 
(1-- B) (]/~-~+ x ~ + ~ ) + ~ ( 1  + B ) ~ '  

I t  m u s t  be  n o t e d  t h a t  i n  i n t e g r a t i n g  t h e  f i r s t  o f  E q s .  ( 5 )  t h e  r e c i p r o c a l  D e b y e  l e n g t h  x 
was considered to be a constant, in determining which nj were replaced by ni0. This can be 
done within the assumption of small deviations of jj(x) from their asymptotic values far 
from the surface of interphase separation. 

The effective potential of the mean field, created at the center position of the iso- 
lated ion by all other charges, is determined as follows: 

~ j ( h ) =  lira [@'(x, r) - -  lim ~'  (x, r)], ( 9 )  
x ~ h , r ~ O  x~O 

where the second term describes the mean field of the isolated ion in the absence of all 
others. According to (7) and (8) the potential (9) can be expressed in the form of a quite 
complicated integral, considered in the Appendix. Below we study for simplicity the special 
case, when there exists no polarization of all surface charges (y = 7, = 0), corresponding 
to the concept of localized adsorption. If the electrolyte solution is adjacent to the die- 
lectric material (e, < ~), then for ~ << i we obtain the following asymptotic equations: 

~ (h) ~ - -  (ez;/8) [1 - -  ~ - -  (n - -  2) ~N] • h = 6, ( 11 ) 

where the following notations have been introduced: 

N - -  1 + ~ ,  ~ =  ~,---_____e_~, ~1= s , - - ~ l  (12) 

If the adjacent phase is a conductor, the corresponding expressions are formally ob- 
tained from (i0) and (ii) for ~ = 0 and ~ = I; in this case the requirement ~ << i is not 
needed in deriving the equations (see Appendix). We stress that the potential r for 
ions adsorbed at the surface of the conductor vanishes within the approximation considered. 
The first term in the square brackets in (i0) corresponds to the ionic field in an un- 
bounded solution, the second term describes the interaction with the dielectric material in 
the region x < 0, and the third describes the effect of a thin layer with a reduced dielec- 
tric constant. The terms in (ii) have a similar meaning. 

We calculate the electrochemical potential of ions in the solution by means of a stand- 
ard procedure [15].' For ions of the j-th type we have 

_, (13) 
~ = ~ (T) + kT ln (von~) + ez~m + ~}~), Vo = no , 
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where ~j(T) is the standard chemical potential, and the last term describes the contribution 
due to Coulomb interion interactions. According to (I0), we write down the energy of these 
interactions in a calculation per unit volume in the form 

2 
E ( x ) =  ezjnj (x) q~j (x) ~ - - - -  zinjo X 

i =  I 2~ 

• ] 1 - -  1 - - e  -2• -- 1 - -  e - ~ x  
2• • 2xx ' 

where nj is replaced by nj0 according to the assumptions made above (the quantity K intro- 

duced in (5) is also considered as a function of nj0). Assuming for simplicity that ~x >> 1 
and neglecting the last term in this equation, we calculate the corresponding contribution 
to the free energy by means of the Gibbs-Helmholtz relation, i.e., 

F(x) = T  E(X) dT,~, z/njo X 
T 2 28 

T i = 1  

�9 3 '  ( 2 •  ~ 

(it is assumed that the contribution mentioned vanishes for T + ~). Hence one obtains 

(x) = OF (x____j_) + OF (x) = 

Onyo O• Onjo 

-- eZz~• [ l - - ( ~ +  2o~N) e -2•  [~ ] 
28 t 2• 2• J '  

which reduces to the classical result for x + ~ and finally determines the potential (13). 

The electrochemical potential of ions in the adsorbed layer can be calculated quite 
similarly. Introducing the electric potential value ~6 in the Helmholtz plane, we write 
down 

J ,--I 

. i = l  

w h i l e  t h e  s e c ond  t e rm  d e s c r i b e s  e n t r o p y  e f f e c t s ,  r e l a t e d  t o  t h e  m u l t i p l i c i t y  o f  methods  o f  
a r r a n g i n g  i 'j i o n s  in  a l a t t i c e  c o n s i s t i n g  o f  l" a l l o w e d  a d s o r p t i o n  p o s i t i o n s .  Using (11)  
and t h e  p r e v i o u s l y  d e f i n e d  e l e c t r o s t a t i c  c o n t r i b u t i o n s  due t o  i n t e r i o n  i n t e r a c t i o n s ,  we 
s u b s e q u e n t l y  o b t a i n  f o r  t h e  e n e r g y  and t h e  f r e e  e n e r g y  

1 j eZ • s 
[I -- ~ -- (~ -- 2) aN] 

2 = -- -- ZIFj, E~ . 7 -  ~ ezjFj~j (6) ----- 
2~ f = l  

J 

F o  = - -  , [ 1  - -  - -  - -  2) NI z rj 
38 .t'=l 

and, finally, 

~(e) OFa _ [1 - -  1~ - -  (z~ - -  2) r162 e2z~• 
a j - -  OPi 38 ' (16)  

which finally determines the potential of ions appearing in the compound of adsorption lay- 
ers. We note that Eqs. (13)-(16) make it possible to also obtain expressions for all other 
thermodynamic functions of ions. 

Under conditions of local thermodynamic equilibrium the electrochemical potential of 
ions of any kind in the diffusion parts of DEL must be homogeneous and must coincide with 
the potential of the same ions in the adsorbed state. Requiring that the quantity (13) be 
independent of x, with account of (14) we obtain the distribution of ions of the j-th type 
in the form 
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nj(x)=njoexp( ezFp I \ kT / gj (x), 

[ 22 [ 2aN)e-~+ 2~xj } ezi• (f3-+ , •  1, 
gj  (x) ~ exp 28kT 2• 

(17) 

where the function gj(x) describes the deviation of the real distribution from that ordi- 
narily used in the theory following from Boltzmann's law without including interion inter- 
actions. The presence of phase boundaries distorts the interactions mentioned in compari- 
son with situations in the bulk of the solution far from the surface of interphase separa- 
tion, and it is precisely this distortion which affects the field of ion concentration in 
the DEL diffuse part. In that case the effect mentioned can be interpreted as an addi- 
tional repulsion from the surface of separation (which is characteristic of boundaries with 
conductors) or as an effective attraction of ions to it (characteristic of boundaries with 
the gas phase). 

The adsorption isotherm of ions of the j-th type is found by equating the electrochem- 
ical potential (15) of adsorbed ions to the potential (13) for ions in the solution: 

Tj ( I__ ~ Tj)--I = vonjoexp ( uj + ezj% ) fj, 
] = t  , k T  (18) 

2~kT - -  ~ [1--- ~ - -  (~ - -  2) ~N] , u j = % j - - ~ ,  

where the factor fj describes the deviation form the classical isotherm obtained by Stern. 
The two terms in the curly brackets in the exponent in the definition of fj correspond, re- 
spectively, to the effect of interion interactions in the solution far from the surface of 
separation and in the adsorption layer. If the adjacent phase is a conductor, then only the 
first of the interactions mentioned play a role, while the second ones do not contribute in 
this case to the electrochemical potential (15) of adsorbed ions (the quantity (16) van- 
ishes), which was already noted in connection with the discussion of Eq. (ii) for the elec- 
tric potential. The interion interactions in the solution undergo filling of the adsorption 
layer, at the same time that the effect of these interactions for adsorbed ions can have an 
arbitrary sign, depending on the dielectric properties of the solution itself, the adjacent 
phase, and the thin layer near its surface. The difference uj of standard chemical poten- 
tials in the adsorbed and free ion states is usually derived From the specific adsorption 
energy. 

We determine now the electric potential in the Helmholtz planes appearing in (18), as 
well as (15). For this it is necessary to solve the problem (3), (4) for the Poisson- 
Boltzmann equation, using for its closure the distribution (17) for ions in the diffuse 
DEL part, as well as Eq. (2) for the surface adsorbed charge density with account of (18). 
As a result, in using the Debye-Huckel approximation the first equation in (3) reduces in 
the region Kx >> 1 to the form 

d ~  e -2• R~ 
dx 2 -- • = RI ~ + -- 2~X' 

Z]n] O, = zinjo, R~ 8ZkT 82kT • (~ + 2aN) ~ 2~e 3 ~ 3 
]= l  1=I 

where < has been determined by Eq. (5) with nj replaced by nj0. The solution of this bound- 
ary value problem is 

~ %e ~8 + ~ [El ( - -  3y) - -  Ei ( - -  3• e2vdy + 

R2 ~ [Ei (_ y )_  Ei (_ • ~Vdy} e-~, ( 1 9 )  

91 = r  - -  ( 9 ,  - -  %) ~/~, 9 ,  = % + ( 4 ~ / s l )  a , 8 .  

where Ei(x) is the exponential integral function, and the connection between r and the ex- 
tent of filling of the adsorption layer ~j is given by the relation 
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= a ,  + a e + eF zj'cj . (20 )  

Substituting the expression for Tj following from (18), we obtain a transcendental al- 
gebraic equation for the potential r Restricting ourselves to situations with low extents 
of filling, corresponding to replacement of Stern isotherms by Henry isotherms, from (18) 
and (20) we have the equation 

4~ { s ( u j+ez jq%)}  
% "~ - -  a ,  + ae + voeF ~ [jzjtzio exp , (21)  

e• leT 

whose solution, with the use of the Debye-Huckel approximation, is: 

~ ~ - -  ~,  + ~ + voer fjzjnjo exp - -  u i  • 
8 N  

(22)  
d --I 

4av~ P [jz/n 4 exp -- 
X 1 + gxkT 

f = l  , , 

I f  i o n s  o f  one  t y p e  only a r e  c a p a b l e  o f  s p e c i f i c  a b s o r p t i o n ,  t h e  c o r r e s p o n d i n g  e q u a -  
t i o n s  f o r  r  as  w e l l  a s  f o r  t h e  c o r r e s p o n d i n g  e x t e n t  o f  f i l l ing ,  can  be o b t a i n e d  f rom (21) 
or  (22)  and f rom ( 1 8 ) ,  f o r m a l l y  a s s u m i n g  t h a t  f o r  a l l  o t h e r  i o n s  u j  t e n d  t o  i n f i n i t y .  Thus ,  
if a l-l-valence electrolyte is adjacent to the surface of a conductor and onlY anions are 
adsorbed, we have 

= Venue exp [, [ = exp . 
1-- ' r  , kT / 2 - ~  (23)  

Exactly the same is obtained by changing the sign of er and replacing u2, n20 by ul, n10 = 
n20, and for adsorption of cations only. In either case the interion interactions, charac- 
teristic of an unbounded electrolyte solution, leads to reduced adsorption in comparison 
with the requirements of Stern's theory. Image forces due to absorption are generally not 
inferred in the given case. Usually the interaction between ions is not included in a 
theory based on the Poisson-Boltzmann equation and on Langmuir's adsorption theory. How- 
ever, inclusion of ion-ion electrostatic correlations in the analysis is unavoidable in con- 
temporary statistical theories. For example, in the theory of [12], based on using the hy- 
perchain approximation, the conclusion has also been drawn of reduction of the effective 
surface charge due to adsorption, though no simple equation has been obtained for describing 
this effect. 

To estimate the effect discussed from a quantitative point of view, consider Grahame's 
clasical experiments [16] of measuring the capacity of a DEL, formed on the surface of a 
mercury electrode in a solution of sodium fluoride, as well as their interpretation in [17]. 
The device measured the total capacity C of the whole DEL, including the dense and diffuse 
parts, for various solution concentrations c 0. The capacity C I of the molecular condenser, 
forming the electrode surface and parallel to its Helmholtz plane, was estimated from these 
data and from the capacity value of the diffuse DEL part C2, calculated from the Guy-Chap- 
man-Stern theory for minimum concentration c o = 0.001 mol/liter. Proceeding by the equation 
C 2 = CCI(C I - C) -I for serial combination of both capacities under the assumption of inde- 
pendence of C I of the solution concentration and with using the experimental C values, the 
capacity C 2 was found for varying concentrations; these values can be referred to condition- 
aly as "experimental". On the other hand, the C 2 value was calculated from the Guy-Chapman- 
Stern theory. The deviation between these values was estimated by means of the ratio K of 
the first term to the second for each concentration c o . In that case the functional depen- 
dence (Co) of [18] was used in the calculations. For c o = 0.01 and 0.i mol/liter K = 0.906 
and 0.689, respectively, were obtained, i.e., the theory gives for C 2 an estimate which is 
too high, getting worse with increasing concentration. However, the variable C2 must be ap- 
proximately linear in the adsorbed charge. Using Eq. (23) to estimate this quantity, and 
not the Stern isotherm, we obtain that the effect of interion interactions is reduced to the 
necessity of dividing the K values obtained by the coefficient f of (23). The corresponding 
calculation gives for K at these concentrations the 1.018 and 1.002 values, respectively (it 
is assumed that T = 300 K). Thus, there is very good agreement between the theoretical 
values of the capacity of the diffuse DEL part, obtained by the ordinarily used theory, but 
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by using the modified isotherm (23), and the values found by the method described of recal- 
culating the experimental values. Though the results of Grahame's experiments with account 
of their errors can be explained on the basis of the standard DEL theory (see the detailed 
discussion in [8]) and by other methods [19], the agreement obtained can be considered a 
sound basis of claiming adequacy of the arguments suggested in the present study. 

Quantitatively the effect of interion interactions on the electric potential of the 
Helmholtz plane is approximately the same as on the adsorbed charge; in the case of contact 
with a conductor it leads to a decrease in the potential. However, the shape of the poten- 
tial distribution for given r in the diffuse DEL part depends on these interactions and on 
the image forces, vanishing weakly everywhere, except for a region directly adjacent to the 
Helmholtz planes. 

We stress that the calculations performed refer only to describing the effect of ion- 
ion interactions and, naturally, do not exhaust the complex problems of DEL structure and 
the shapes of ionic thermodynamic functions. Dwelling on the aspect of obvious possible 
generalizations, related with accounting for charge polarization, the disagreement of planar 
locations of charges of different occurrence, and the nonlinear response of the diffuse DEL 
part, we mention the necessity of analyzing the polarization of dipolar solvent molecules 
and accounting for charge discreteness, making it possible to explain the well-known Esin- 
Marker effect (see the detailed discussion in [i0]). 

Finally, one must recall the most important problem of finding the parameters of therm- 
odynamic equilibrium of components of electrolyte solutions in finely porous membranes of 
different structure and in concentrated colloidal systems, required to calculate many elec- 
trochemical processes. In this context account of interion interactions is very important. 
Indeed, even in bodies with wide pores and in colloids in which one can neglect DEL overlap 
on separate particles, the adsorbed ions parts and the localization parts of counter ions 
can lead to substantial ion combination of the main mass of the solution, unavoidably re- 
lated to driving forces of diverse technological processes. 

APPENDIX 

Equation (9) is written in expanded form as: 

~ (h) = (ez j /~)  (P~ - -  e~) ,  

P1 lira [ 1 + (1 -- B) - I /~  / + • __ a(1 + B) O) -2(h-~)V~+x~ O)J0 (o)r) do) 
" e , _ _  ~o~ (1 - -  B)-]/O)2 + x2 + a (1 + B) ) -1/O)~ + • ' 

P 2 =  l i m i {  1 + 1 - - ~ 1 - - ~ ( l  +61 ) -2 (~ -8 )~ /  r~O ~ -  1 - - 6 1 @  ~ ( l  @ 61) e j Jo(~r) do), 

where in deriving these relations we have taken 7 = ~, = 0, have used Eqs. (7) and (8), and 
have introduced B = $ie -2m6, where $i is defined in (12). This expression can also be rep- 
resented in the form (we take into account here that the quantity dependent on ~i in the 
representation for P2 is identically equal to -~, where ~ is also defined in (12)) 

and, finally, 

P1 - -  P2 = G1 + G2 + G3, 

' O) do) = lira ( - -  ~Q -1- 1 / ~  -ff -+- ~2 _ • = _ ~, 
O ! = -- 1 3/O)2~_ x2 a~ 

do) 02 = 6i [e-2(~-~)~ -- ]/70)+ • e--2(h--6)g~--%-~ ] 

-- ~-- ( 1 - - e x p [ - - 2 •  
2 (h-- ~) 

(due to the smallness of O)6 we have taken B = 61). 
= el/e, using the expansion 

O)6 
]/~+ • 

The integral G a is calculated for small 
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X 
( 1 - -  Ol) ] / ( ~  + • 4- ~ (1 -F ~l) 8] 1 / ~  + • H- as] 

X 

h::0 h--0 h=O 

The q u a n t i t y  ~ c a n  be  r e p r e s e n t e d  i n  t h e  f o r m  o f  t h e  same e x p a n s i o n  w i t h  a n e g a t i v e  s i g n  a t  
K : 0.  I f  Kh > 1 we h a v e ,  u s i n g  t h e  L a p l a c e  m e t h o d  and  summing t h e  s e r i e s :  

G ~  2a  [~i 1 - -  exp - -  2 •  -- 8) 2 dO,) = 
-- ~i • • 

1 1 -1/~- ) e - ~  , 1 + ~ 
o~/V N - - - -  

2• h 1 -- ~i 

If h = 6,  we have 

]/~+ x~ ) do : 2aN• 

• a ~ l i m ( ] / ~ 6 - F • 2 1 5 2 1 5  • 

Equations (i0) and (ii) are hence easily obtained. 
($i = i), the integral G 3 vanishes identically. 

If the adjacent phase is a conductor 

NOTATION 

Here d denotes the characteristic ion diameter; C are the coefficients in (7); E is 
the energy of interion interactions; e is the electron charge; F is the free energy of in- 
terion interactions; f and g are correction coefficients in (17) and (18); h is the distance 
between the center of an isolated ion and the surface of interphase separation; J is the 
number of ion types; k is the Boltzmann constant; m is the fraction of surface ions capable 
of free displacement; N is a parameter in (12); n o and nj are the number concentrations of 
molecules of the solvent and of ions of the j-th kind; q is the bulk charge density; r is 
the radial coordinate in the plane of separation; T is temperature; u is the specific ad- 
sorption energy; v 0 is the specific volume of a solvent molecule; x is the normal coordi- 
nate; z is the valence of an ion; a, ~ are coefficients introduced in (8) and (12); F is 
the density of adsorption centers; Fj is the number of ions of j-th type on a single Helm- 

holtz plane; 7 are parameters introduced in (6); 6 is the distance between the Helmholtz 
plane and the surface of separation; ~ is the dielectric constant; p is the electrochemical 
potential; o is the surface charge density; �9 is the extent of filling of an adsorption 
layer; ~ is the electric potential; and ~, X denote standard chemical potentials. Sub- 
scripts: i, j, a, e, * refer, respectively, to the layer between the surface of separation 
and the Helmholtz plane, the ion type, the adsorption layer, the charge side in the Helm- 
holtz plane, and the phase boundary. 
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DIFFUSION ENTROPY AND THEORETICAL SEPARATIVE 

WORK FOR GAS MIXTURES WITH VARIABLE 

CONCENTRATION 

D. D. Kalafati UDC 536.75 

The entropy of mixing and the minimum separative work of a gas mixture with 
fixed composition per kmole of a component are studied. The entropy of diffu- 
sion and the theoretical separative work per kmole of a component in the con- 
centration range of the component are determined for a limited mass of the 
mixture, when the separation process proceeds with variable concentration. 

Entropy of mixing and separative work per kmole of the mixture. In technology it is 
often necessary to separate gas mixtures. Thus oxygen and nitrogen as well as inert gases 
(neon, krypton, and xenon) present in them with low (up to z = 10 -6 ) concentrations are ob- 
tained from air. The development of nuclear power has raised the problem of separating 
uranium isotopes for enrichment of nuclear fuel. Helium is produced by extraction from 
natural gas. 

The minimum separative work of a mixture of gases is determined from the increase in 
the entropy accompanying irreversible mixing of ideal gases under identical pressure and 
temperature. According to Gibbs, the increase in entropy accompanying irreversible mixing 
is equal to the entropy of mixing per kmole of the mixture [i]: 

m 
A~ixi ~ R(Z BIn 1/z~ @ ZA In 1/zA ). (1) 

Hence the minimum separative work of a gas mixture with a constant composition at tempera- 
ture T (in K) is 

~ixi~g TASmlxing (2) 

For a two-component mixture the entropy of mixing and the minimum separative work, 
which is proportional to the entropy of mixing, are usually given as functions of the con- 
centration z, as done in Fig. 1 (dashed curve). It should be noted that the actual separa- 
tive work of a mixture is, as a rule, several times greater than the indicated minimum. 
This indicates that other irreversible losses are also present. This dependence also gives 
the impression that for low concentration of one component the separative work of a mixture 
decreases appreciably and approaches zero, though in reality at low concentrations of the 
component the separation work which must be performed in order to obtain the component in- 
creases sharply. This impression results from the fact that the dashed curve in Fig. I is 
always constructed per kmole of the mixture, even though when substances are obtained from 
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